Snowimage-e.ru

Зимняя одежда

Нейтрон

15-10-2023

Нейтрон
Символ
Масса 939,565378(21) МэВ[1], 1,674927351(74)·10−27 кг[1], 1,00866491600(43) а. е. м.[1]
Античастица
Классы фермион, адрон, барион, N-барион, нуклон
Квантовые числа
Электрический заряд 0
Спин 1/2
Изотопический спин 1/2
Барионное число 1
Странность 0
Очарование 0
Другие свойства
Время жизни 880.1 ± 1.1 c[2]
Схема распада
Кварковый состав udd

Нейтро́н (от лат. neuter — ни тот, ни другой) — элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Атомные ядра состоят из нейтронов и протонов.

Содержание

Открытие

Открытие нейтрона (1932) принадлежит физику Дж. Чедвику, за это открытие он получил Нобелевскую премию по физике в 1935 году.

В 1930 г. В. А. Амбарцумян и Д. Д. Иваненко показали, что ядро не может, как считалось в то время, состоять из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.[3][4]

В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и произвёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 г. Д. Д. Иваненко[5] и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

Основные характеристики

Несмотря на нулевой электрический заряд, нейтрон не является истинно нейтральной частицей. Античастицей нейтрона является антинейтрон, который не совпадает с самим нейтроном.

Строение и распад

кварковая структура нейтрона

Считается надёжно установленным, что нейтрон является связанным состоянием трёх кварков: одного «верхнего» (u) и двух «нижних» (d) кварков (кварковая структура udd). Близость значений масс протона и нейтрона обусловлена свойством приближённой изотопической инвариантности: в протоне (кварковая структура uud) один d-кварк заменяется на u-кварк, но поскольку массы этих кварков очень близки, такая замена слабо сказывается на массе составной частицы.

Поскольку нейтрон тяжелее протона, то он может распадаться в свободном состоянии. Единственным каналом распада, разрешённым законом сохранения энергии и законами сохранения электрического заряда, барионного и лептонного квантовых чисел, является бета-распад нейтрона на протон, электрон и электронное антинейтрино (а также, возможно, гамма-квант). Поскольку этот распад идёт с образованием лептонов и изменением аромата кварков, то он обязан происходить только за счёт слабого взаимодействия. Однако, ввиду специфических свойств слабого взаимодействия, скорость этой реакции аномально мала из-за крайне малого энерговыделения (разности масс начальных и конечных частиц). Именно этим объясняется тот факт, что нейтрон является настоящим долгожителем среди элементарных частиц: его время жизни, приблизительно равное 15 минутам, примерно в миллиард раз больше времени жизни мюона — следующей за нейтроном метастабильной частице по времени жизни.

Кроме того, разница масс между протоном и нейтроном около 1,3 МэВ невелика по меркам ядерной физики. В результате, в ядрах нейтрон может находиться в более глубокой потенциальной яме, чем протон, и потому бета-распад нейтрона оказывается энергетически невыгодным. Это приводит к тому, что в ядрах нейтрон может быть стабильным. Более того, в нейтроно-дефицитных ядрах происходит распад протона в нейтрон (с захватом орбитального электрона или вылетом позитрона).

Другие свойства

Изоспины нейтрона и протона одинаковы (1/2), но их проекции противоположны по знаку. Проекция изоспина нейтрона по соглашению в физике элементарных частиц принимается равной −1/2, в ядерной физике +1/2 (поскольку в большинстве ядер нейтронов больше, чем протонов, это соглашение позволяет избегать отрицательных суммарных проекций изоспина).

Нейтрон — единственная[источник не указан 504 дня] из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие — искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных нейтронов. Измеренное гравитационное ускорение нейтронов в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.

При огромном давлении внутри нейтронной звезды нейтроны могут деформироваться вплоть до того, что приобретают форму куба[11].

Направления исследований в физике нейтронов

Фундаментальные исследования:

Прикладные исследования:

См. также

Примечания

  1. ↑ http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
  2. ↑ http://pdg.lbl.gov/2012/tables/rpp2012-sum-baryons.pdf
  3. Ambarzumian, V., Iwanenko, D. Les électrons inobservables et les rayons // Compt. Rend. Acad Sci. Paris. — 1930. — Т. 190. — С. 582.
  4. 10.1007/s10511-008-9016-6
  5. The neutron hypothesis // Nature. — 1932. — В. 3265. — Т. 129. — № (28 May 1932). — С. 798. — 0028-0836. — 10.1007/s10511-008-9016-6
  6. CODATA Value: proton mass energy equivalent in MeV.
  7. CODATA Value: neutron mass in u.
  8. CODATA Value: neutron mass.
  9. CODATA Value: neutron-electron mass ratio.
  10. CODATA Value: neutron magnetic moment to nuclear magneton ratio.
  11. 1108.1859v1 [nucl-th] 

Литература

  • Dirk Dubbers, Michael G. Schmidt The neutron and its role in cosmology and particle physics (англ.) // 10.1103/RevModPhys.83.1111

Ссылки

  • Экспериментальные свойства нейтронов (сайт Particle Data Group, англ.).
  • CODATA Internationally recommended values of the Fundamental Physical Constants (2010).


Нейтрон.

© 2012–2023 snowimage-e.ru, Россия, Петрозаводск, ул. Диспетчерская 33, +7 (8142) 28-85-31